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In many realistic calculations, the computational grid spacing required to resolve the mean
flow gradients is much smaller than the grid spacing required to resolve the unsteady
propagating waves of interest. Because of this, the high temporal resolution provided by
existing optimized time marching schemes can be excessive due to the small time step
required for stability in regions of clustered grid. In this work, explicit fourth-order accu-
rate Runge–Kutta time marching schemes are optimized to increase the inviscid stability
limit rather than the accuracy at large time steps. Single and multiple-step optimized
schemes are developed and analyzed. The resulting schemes are validated on several real-
istic benchmark problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The field of computational aeroacoustics (CAA) is focused on the accurate simulation of unsteady flow and noise [1,2]. To
achieve this goal, highly accurate spatial differencing schemes (e.g., [1,3–5,7]), along with optimized time marching schemes
(e.g., [4,8–10]) have been developed. To validate these schemes, a range of benchmark validation problems has been spec-
ified, and solutions made available [11–14]. As the CAA schemes have increased in capability, the validation problems have
increased in complexity, incorporating realistic nonlinear flows about complex geometries.

As more complex problems are attempted, the underlying assumptions made in the development of the CAA schemes
sometimes must be re-evaluated. For example, the optimized spatial differencing and time marching incorporated in CAA
methods are designed to propagate accurately unsteady flow phenomena through non-uniform grids wrapped about com-
plex geometries such as the stators in a turbojet engine. Experience has shown that the increased accuracy from the spatial
differencing schemes is always beneficial, even near flow discontinuities. However, the use of high-accuracy explicit time
marching schemes can result in an excessive number of time steps due to the stability limit on the time step size.
. All rights reserved.
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Nomenclature

A area of duct
CFL Courant–Friedrichs–Lewy stability condition for explicit time marching schemes
k physical wavenumber of propagating wave
ðkDxÞ� numerical wavenumber of spatial differencing scheme
k physical wavelength of propagating wave
x physical frequency of propagating wave
xDt numerical frequency of time marching scheme
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In a time marching scheme for an unsteady flow problem, there are two time steps of interest. The first is the largest time
step that can be taken while retaining an accurate unsteady solution (the accuracy limit). The second time step of interest is
the largest time step that can be taken while retaining a stable calculation (the stability limit).

The inviscid stability limit on an explicit time marching scheme is directly related to the minimum time required for the
fastest propagating wave to move from one grid point to the next (the CFL condition). In a time marching scheme using a
single time step size throughout the computational domain, such as a Runge–Kutta time marching scheme, this results in
the smallest grid spacing determining the time step for the entire calculation, regardless of whether the resulting temporal
resolution is necessary for solution accuracy. One method to avoid this problem is to use a multi-step Adams–Bashforth time
marching scheme, allowing different grid blocks to march at different time steps while retaining time accuracy [15]. Such
methods are effective, but are hard to generalize for use on arbitrary flow problems. Implicit time marching schemes can
also allow large time steps [16] at the price of sub iterations to converge the solution at each time step.

A popular explicit Runge–Kutta scheme is the classical four-stage fourth-order scheme, which has a stability limit of
CFL = 2.83. In the past, several researchers have optimized Runge–Kutta schemes to increase their stability and/or accuracy.
For steady-state calculations, Jameson [17] developed a five-stage second-order scheme, which has a stability limit of
CFL = 4.0 but low accuracy for time marching. Hu et al. [8] introduced the low-dispersion and dissipation Runge–Kutta
(LDDRK) schemes, which were optimized for accuracy to the stability limit. The most popular of these schemes is the
two-step fourth-order RK56 scheme, which has a stability limit of CFL = 2.85. Recently, Calvo et al. [10] have introduced a
six-stage fourth-order Runge–Kutta scheme that is partially optimized for accuracy and partially optimized for a large sta-
bility limit. The resulting scheme has a stability limit of CFL = 3.82.

In this work, six/seven stage fourth-order Runge–Kutta schemes are optimized to maximize the inviscid stability limit
while retaining fourth-order accuracy. The effect of optimizing a single-step scheme is compared to the results obtained
by optimizing two-step methods. The resulting schemes have inviscid stability limits of up to a CFL of 5.7, and have better
accuracy than a classical fourth-order Runge–Kutta scheme.

2. Linear analysis of numerical schemes

In order to analyze the performance of a time-marching numerical method, a linear model equation for inviscid flow is
used:
@u
@t
þ c

@u
@x
¼ 0: ð1Þ
A simple-harmonic solution to the equation is assumed:
uðx; tÞ ¼ ei kx�xtð Þ; ð2Þ
where,
x ¼ ck: ð3Þ
This solution represents a simple-harmonic wave propagating at a speed of c in the positive x direction. In applying a
numerical scheme to solve Eq. (1), the spatial and temporal derivatives are replaced by numerical approximations, each
of which impacts the accuracy of the solution. In the case of a propagating wave, the errors can be classed as dispersion
(a change in the propagation speed of the wave) and dissipation (a change in the amplitude of the wave).

The spatial derivative is considered first. The analytic result for the spatial derivative is:
@u
@x

����
j;analytic

¼ ikuj ¼
iðkDxÞ

Dx
uj: ð4Þ
A finite-difference spatial derivative at grid point j on a uniform grid can be written as:
@u
@x

����
j;numerical

¼ 1
Dx

XN

n¼�M

anujþn: ð5Þ



V. Allampalli et al. / Journal of Computational Physics 228 (2009) 3837–3850 3839
If the spatial derivative is formulated as a central difference, the dissipation errors can be eliminated. The resulting spatial
derivative can be written as:
Table 1
Maximu

Differen

Explicit
Explicit
Explicit
Compac
@u
@x

����
j;numerical

¼ 1
Dx

XN

n¼1

anðujþn � uj�nÞ: ð6Þ
Substituting the assumed solution into the central difference approximation, the numerical spatial derivative is obtained:
@u
@x

����
j;numerical

¼ i
Dx

XN

n¼1

an sinðnkDxÞ
" #

uj ¼
iðkDxÞ

Dx

PN
n¼1an sinðnkDxÞ
ðkDxÞ

" #
uj: ð7Þ
Defining the numerical wavenumber as:
ðkDxÞ� ¼
XN

n¼1

an sinðnkDxÞ: ð8Þ
Eq. (7) becomes:
@u
@x

����
j;numerical

¼ iðkDxÞ
Dx

kDxð Þ�

ðkDxÞ

� �
uj ¼

ðkDxÞ�

ðkDxÞ

� �
@u
@x

����
j;analytic

: ð9Þ
Due to the Nyquist limit, the highest-wavenumber wave that can be resolved on a uniform grid has two grid points
per wavelength. This limits the maximum value of the physical wavenumber that may be resolved in a numerical calculation
to:
kmax ¼
2p
kmin

¼ 2p
2Dx

¼ p
Dx

: ð10Þ
The differences in accuracy of the various schemes can be seen; in particular, it can be seen that each scheme has a dif-
ferent maximum value for the numerical wavenumber. Table 1 lists the maximum numerical wavenumbers from each
scheme.

Using the development thus far, the numerical equivalent of Eq. (1) can be written for this assumed solution as:
@u
@t
¼ FðuÞ ¼ � i

Dx
½cðkDxÞ��u: ð11Þ
Using Eq. (3) to define a numerical frequency:
x� ¼ cðkDxÞ�

Dx
: ð12Þ
Eq. (11) can be rewritten as:
@u
@t
¼ FðuÞ ¼ �ix�u: ð13Þ
To integrate Eq. (13) in time, a Runge–Kutta scheme can be used. A classical four-stage fourth-order Runge–Kutta scheme
can be written as:
u0 ¼ un;

k1 ¼ DtFðu0; tÞ;

k2 ¼ DtF u0 þ
1
2

k1; t þ
Dt
2

� �
;

k3 ¼ DtF u0 þ
1
2

k2; t þ
Dt
2

� �
;

k4 ¼ DtFðu0 þ k3; t þ DtÞ;

unþ1 ¼ un þ 1
6
ðk1 þ 2k2 þ 2k3 þ k4Þ:

ð14Þ
m value of numerical wavenumber for spatial differencing methods.

cing scheme Maximum ðkDxÞ�

second-order 1.0
DRP 1.664
sixth-order 1.586
t sixth-order 1.989
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Substituting in the function from Eq. (13), the fourth-order Runge–Kutta scheme gives:
unþ1 ¼ 1þ ðix�DtÞ þ 1
2
ðix�DtÞ2 þ 1

6
ðix�DtÞ3 þ 1

24
ðix�DtÞ4

� �
un: ð15Þ
The relative error magnitude of the time marching can be evaluated as:
Error ¼ unþ1

un

� �
� eiðx�DtÞ

����
����: ð16Þ
For stability, the amplitude of the propagating wave should not increase:
unþ1

un

����
���� 6 1: ð17Þ
For accuracy, the amplitude of the propagating wave should remain constant. Figs. 1 and 2 show the error magnitude and
amplitude results for a Runge–Kutta fourth-order scheme. It is important to note that the time marching accuracy and sta-
bility depend only on the product of the time step and the magnitude of the numerical frequency of the scheme. Since the
numerical frequency is the product of the physical wavespeed and the numerical wavenumber of the spatial differencing
method, the maximum value of the numerical frequency depends on the maximum value of the numerical wavenumber
of the spatial differencing scheme. Thus, spatial differencing schemes which have higher maximum numerical wavenumbers
result in higher maximum values of the numerical frequency. Because of this, the maximum allowable time step for stability
is lower for spatial differencing schemes with higher maximum numerical wavenumbers. For example, from Table 1 it is ex-
pected that the use of a second-order central differencing scheme instead of a DRP scheme will result in a time step that is
approximately 1.644 times larger due to the lower value of the maximum numerical wave number.
Fig. 1. Amplitude performance of optimized RK schemes.

Fig. 2. Error magnitude of optimized RK schemes.



Table 2
Comparison of optimized Runge–Kutta schemes.

Scheme c3 c4 c5 c6 CFL for accuracy limit (2e-3) (CFL per stage) CFL for stability limit (CFL per stage)

RK4 1/6 1/24 0 0 0.75 (0.1875) 2.83 (0.7075)
Jameson RK5 3/16 1/32 1/128 0 0.45 (0.09) 4.0 (0.798)
Hu RK6 1/6 1/24 0.00781005 0.00132141 1.81 (0.3017) 1.65 (0.275)
Calvo RK6 1/6 1/24 0.00785333 0.00094889 1.30 (0.2167) 3.82 (0.6366)
Hu RK56 (1) 1/6 1/24 0.00361050 0 2.00 2.84
Hu RK56 (2) 1/6 1/24 0.0121101 0.00285919 (0.3636) (0.5163)
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3. Development of optimized Runge–Kutta schemes

In the past, researchers have added additional stages to the Runge–Kutta method in order to gain additional coefficients.
For example, the linear performance of a seven-stage Runge–Kutta scheme with a minimum of second-order accuracy can be
expressed as:
unþ1 ¼ 1þ c1ðix�DtÞ þ c2ðix�DtÞ2 þ c3ðix�DtÞ3 þ c4ðix�DtÞ4 þ c5ðix�DtÞ5 þ c6ðix�DtÞ6 þ c7ðix�DtÞ7
� �

un: ð18Þ
To obtain linear fourth-order accuracy, the coefficients c1; c2; c3 and c4 can be set to 1, 1/2, 1/6 and 1/24, respectively. If
fourth-order accuracy is all that is desired, the values of the remaining coefficients are arbitrary and can be determined using
an optimization procedure. The goal of the optimization procedure is usually to obtain a high stability limit with little regard
for accuracy (e.g., the Jameson RK5), to obtain a more accurate time marching scheme with little regard for the stability limit
(e.g., the Hu RK6), or to obtain a more accurate time marching scheme with a larger stability limit (e.g., the Calvo RK6). Table
2 illustrates the effect of optimization on the stability and accuracy of Runge–Kutta schemes. The computational efficiency of
each scheme is also given in Table 2; to determine the efficiency, the total accuracy or stability limit of each scheme is di-
vided by the number of stages required by the scheme.

In his work, Hu realized that optimizing Runge–Kutta schemes over two steps rather than one step resulted in much more
accurate and efficient schemes [8]. An example of this is the Hu RK56 scheme, which uses a two-step time marching cycle in
which a five-stage Runge–Kutta time step is followed by a six-stage time step. Each time step has its own set of coefficients,
as shown in Table 2. The resulting scheme increases both accuracy and stability compared to the single-step Hu RK6 scheme,
and is more efficient due to the larger time step and lowered computational effort.

The resulting coefficients of these optimized schemes are given in Table 2, and their performance is compared to the clas-
sical Runge–Kutta scheme in Figs. 1 and 2. Figs. 1 and 2 show the effectiveness of each optimization strategy in achieving
large stability limits or accuracy at larger time steps.
4. Development of HALE-RK schemes

An inherent assumption in the optimization of Runge–Kutta schemes for accuracy is that the unsteady flow dynamics at
the length and time scales associated with the smallest grid spacing is important to the accuracy of the overall solution. As
CAA codes have matured and have been applied to more realistic flow problems containing a range of length and time scales
in the flow, this assumption is not necessarily true.

For example, the steady mean flow about an object can have very steep gradients (in boundary layers, or about sharp
leading edges, for example). To accurately resolve the mean flow, computational grid points must be clustered in these re-
gions. The length scales associated with unsteady flow phenomena in the problem may be much larger than the length scales
of these mean flow gradients, and thus allow a much coarser grid to be used away from the object.

Due to the inviscid stability limit, the allowable time step in the calculation is associated with the smallest grid spacing
and the mean flow velocity and speed of sound. Thus, the clustered grid necessary to resolve steady flow gradients can result
in an excessive number of time steps to calculate the unsteady flow.

In this work, an optimization procedure is used to obtain six/seven stage, fourth-order Runge–Kutta schemes. The goal of
the optimization is to use the free coefficients c5; c6; c7 to achieve maximum inviscid stability. Once the values of the free
coefficients were obtained these schemes are formulated into a 2N-storage format [6]. These schemes in 2N-storage format
satisfy the necessary conditions to have nonlinear fourth-order accuracy. This formulation is explained in the next section.
The new high-accuracy large-step explicit Runge–Kutta (HALE-RK) schemes obtain an inviscid stability limit of CFL = 4.9–5.7
while obtaining higher accuracy than the classical Runge–Kutta fourth-order scheme.

The coefficients for the HALE-RK schemes are given in Table 3. The optimized coefficients are obtained numerically, using
a gradient method starting from zero values for all optimization coefficients. Following Hu’s method, the schemes were opti-
mized as multi-step schemes. It was found that optimizing beyond two-step schemes did not improve the results
appreciably.

Figs. 3 and 4 show the performance of the resulting schemes compared to the earlier schemes. The new HALE-RK schemes
show very large inviscid stability limits compared to the other schemes, and still show a reasonable accuracy range.



Fig. 4. Error magnitude of HALE-RK schemes.

Table 3
Comparison of HALE-RK schemes.

Scheme c3 c4 c5 c6 c7 CFL for accuracy limit
(2e-3) (CFL per stage)

CFL for stability limit
(CFL per stage)

RK4 1/6 1/24 0 0 0 0.75 2.83
(0.1875) (0.7075)

Jameson 3/16 1/32 1/128 0 0 0.45 3.99
RK5 (0.09) (0.798)
Calvo 1/6 1/24 0.00785333 0.00094889 0 1.30 3.82
RK6 (0.2167) (0.6366)
Hu 1/6 1/24 0.00361050 0 0 2.00 2.84
RK56 1/6 1/24 0.0121101 0.00285919 0 (0.3636) (0.5163)
HALE- 1/6 1/24 0.00556351 0.00092671 0 0.945 4.90
RK6 (0.1575) (0.8167)
HALE- 1/6 1/24 0.00770233 0.00087053 0.000107 1.205 5.67
RK7 (0.1721) (0.81)
HALE- 1/6 1/24 0.00509534 0.00092304 0 1.04 5.53
RK67 1/6 1/24 0.00822319 0.00087153 0.000126 (0.16) (0.8508)

Fig. 3. Amplitude performance of HALE-RK schemes.
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5. Fourth-order accurate, 2N-storage HALE-RK schemes

For an equation of the form:
@u
@t
¼ Fðt; uðtÞÞ; ð19Þ
with an initial condition:
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uðt0Þ ¼ u0 ð20Þ
the implementation of the pth order of accuracy s-stage RK method, over a time step Dt is given as
unþ1 ¼ un þ Dt
Xs

i¼1

biki;

ki ¼ F tn þ hci; un þ Dt
Xi�1

j¼1

aijkj

 !
i ¼ 1; . . . ; s;

ð21Þ
where, ci ¼
Pi�1

j¼1aij

For the scheme in Eq. (21) to have fourth-order accuracy, the coefficients must obey certain conditions [22].These con-
ditions are obtained by equating the coefficients of the Taylor series development of u. The explicit form of these conditions
is given below
ðO1Þ
X

bi ¼ 1; ðO2Þ
X

bici ¼
1
2
; ðO3Þ

X
bic2

i ¼
1
3
;

ðO3Þ
X

biaijcj ¼
1
6
; ðO4Þ

X
bic3

i ¼
1
4
; ðO4Þ

X
biciaijcj ¼

1
8
;

ðO4Þ
X

biaijc2
j ¼

1
12

; ðO4Þ
X

biaijajkck ¼
1

24
:

ð22Þ
The sums on all indices extend from 1 to s and each condition is preceded by the order of accuracy it governs. Using the same
Taylor series development, the explicit form [22] of the coefficients ci in Eq. (18) for methods up to seven stages is,
c1 ¼
X

bi; c2 ¼
X

bici; c3 ¼
X

biaijcj;

c4 ¼
X

biaijajkck; c5 ¼
X

biaijajkaklcl;

c6 ¼
X

biaijajkaklalmcm; c7 ¼
X

biaijajkaklalmamncn:

ð23Þ
It can be noted that some of the sums in Eq. (23) also appear in Eq. (22).The scheme can be formulated to a 2N-storage format
to reduce the amount of storage [6]. The implementation of the 2N-storage RK scheme over a time step Dt can be written as
u1 ¼ uðt0Þ;
t1 ¼ t0;

wiþ1 ¼ aiwi þ DtFðti;uiÞ;
uiþ1 ¼ ui þ biwiþ1;

tiþ1 ¼ t0 þ ciDt;

9=
; i ¼ 1; s:

uðt0 þ DtÞ ¼ usþ1

ð24Þ
In Eq. (24) s is the number of stages. The relationship between the original RK variables and the 2N-storage variables up to
seven stages are given in the Appendix 1. HALE-RK schemes were formulated in 2N-storage format and retain fourth-order
accuracy.

5.1. HALE-RK6

To obtain the fourth-order 6 stage HALE-RK scheme in 2N-storage format, the eight order conditions in Eq. (22) and the
two additional conditions obtained by specifying c5 and c6 in Eq. (23) are expressed in terms of the coefficients a2; . . . :;a6

and b1; . . . :; b6.This leads to a system of ten nonlinear equations with eleven unknowns. A solution is chosen such that the
scheme has monotonically increasing values of ci.

5.2. HALE-RK7

For the seven stage scheme, the eight order conditions in Eq. (22) and the three additional conditions obtained by spec-
ifying c5c6 and c7 in Eq. (23) are expressed in terms of the coefficients a2; . . . :;a7 and b1; . . . :; b7. This leads to a system of
eleven nonlinear equations with 13 unknowns. A solution is again chosen such that the scheme has monotonically increasing
values of ci.

5.3. HALE-RK67

This is a two-step scheme. The scheme has fourth-order accuracy in both steps with six and seven stages in the first and
second steps. At the end of both steps, the solution marches by a time step of 2Dt. The process of obtaining 2N-storage format
for steps 1 and 2 is similar to that used for HALE-RK6 and HALE-RK7 respectively. Tables 4–7 give the 2N-storage coefficients
of the three HALE-RK schemes discussed.



Table 4
2N-storage coefficients for HALE-RK6 scheme.

Stage ai bi ci

1 0.000000000000 0.122000000000 0.000000000000
2 �0.691750960670 0.477263056358 0.122000000000
3 �1.727127405211 0.381941220320 0.269115878630
4 �0.694890150986 0.447757195744 0.447717183551
5 �1.039942756197 0.498614246822 0.749979795490
6 �1.531977447611 0.186648570846 0.898555413085

Table 5
2N-storage coefficients for HALE-RK7 scheme.

Stage ai bi ci

1 0.000000000000 0.117322146869 0.000000000000
2 �0.647900745934 0.503270262127 0.117322146869
3 �2.704760863204 0.233663281658 0.294523230758
4 �0.460080550118 0.283419634625 0.305658622131
5 �0.500581787785 0.540367414023 0.582864148403
6 �1.906532255913 0.371499414620 0.858664273599
7 �1.450000000000 0.136670099385 0.868664273599

Table 6
2N-storage coefficients for HALE-RK67 scheme, step 1.

Stage ai bi ci

1 0.000000000000 0.122000000000 0.000000000000
2 �0.729209403105 0.469478137589 0.122000000000
3 �1.864880899763 0.324481527871 0.249130265107
4 �0.596273618447 0.425379834670 0.409751148470
5 �0.947418171615 0.541445529815 0.709575835016
6 �1.466974856227 0.215637416704 0.889455874056

Table 7
2N-storage coefficients for HALE-RK67 scheme, step 2.

Stage ai bi ci

1 0.000000000000 0.126989033120 0.000000000000
2 �0.680465510779 0.526334177737 0.126989033120
3 �2.913563164146 0.218277359812 0.295170955763
4 �0.413737223754 0.285075800760 0.310235604043
5 �0.497690668921 0.542609381079 0.587171201470
6 �1.891291697445 0.432735912796 0.867440151911
7 �2.091000000000 0.128782687265 0.877440151911
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A system of nonlinear and non-autonomous, first order differential equations used in [9] is used to test the accuracy of the
HALE-RK schemes. It is given as
U0 ¼ 1
U
� Vet2

t2 � t; V 0 ¼ 1
V
� et2 � 2te�t2

: ð25Þ
The initial conditions are:
Uð1Þ ¼ 1; Vð1Þ ¼ e�1: ð26Þ
The exact solution for the system is:
UðtÞ ¼ 1
t
; VðtÞ ¼ e�t2

: ð27Þ
Fig. 5 shows results for a convergence study for the three HALE-RK schemes. They are compared with Hu’s RK56 and clas-
sical RK4 schemes. The global error norms were calculated as jU � uj þ jV � v j at t ¼ 1:4. The convergence rate for the
schemes approach �4. This is consistent with the theoretical predictions.



Fig. 5. Convergence study of HALE-RK schemes.
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6. Application of HALE-RK67 method to benchmark problems

6.1. Acoustic wave interacting with shock

As a test for the HALE-RK schemes, the schemes were applied to the quasi-1D nonlinear Euler equation benchmark test
case from the Third Computational Aeroacoustics Workshop [13]. In this benchmark problem, the quasi-1D Euler equations
are solved:
@

@t

q
qu

E

8><
>:

9>=
>;þ

@

@x

qu

qu2 þ p

uðEþ pÞ

8><
>:

9>=
>;þ

1
A
@A
@x

qu

qu2

uðEþ pÞ

8><
>:

9>=
>; ¼ 0; ð28Þ
where,
E ¼ p
c� 1

þ q
2
ðu2Þ;

c ¼ 1:4:
ð29Þ
The area of the duct is given as:
AðxÞ ¼ 1:0� 0:661514e� ln 2 x
0:6ð Þ

2

x 6 0;

0:536572� 0:198086e� ln 2 x
0:6ð Þ

2

x > 0:

8<
: ð30Þ
The computational domain ranges from �10 < x < 10. At the inflow boundary (x = �10), the mean quantities are:
�p ¼ 1
c
;

�q ¼ 1;
�M ¼ 0:2006533;

ð31Þ
and at the outflow boundary (x = 10):
�p ¼ 0:6071752: ð32Þ
At the inflow boundary, a low-amplitude incoming acoustic wave is imposed:
q0

u0

p0

8><
>:

9>=
>;

x¼�10

¼
e
e
e

8><
>:

9>=
>; sin x

x
1þM

� t
� �� �

;

e ¼ 10�5;

x ¼ 0:6p:

ð33Þ
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This test case illustrates the motivation for the development of the HALE-RK schemes. In this problem, the acoustic wave
has a wavelength that is on the order of the length of the nozzle constriction. In the nozzle constriction, the mean flow
changes sharply from subsonic to supersonic and back to subsonic via a shock. Upstream and downstream of the nozzle,
the mean flow is uniform. Thus, the grid spacing is driven by the resolution requirements of the acoustic wave in the region
upstream and downstream of the nozzle (which requires a relatively coarse grid), and by the resolution requirements of the
mean flow gradients in the nozzle constriction (which requires a relatively fine grid).

The time step is determined by the fine grid spacing in the nozzle (because of stability concerns), which results in a very
fine temporal resolution that is not required by the unsteady low-frequency disturbances that are actually present in the
calculation.

For this test case, the HALE-RK schemes were used for time marching. For spatial differencing, Tam and Webb’s Disper-
sion Relation Preserving (DRP) optimized 7-point fourth-order scheme was used. To provide damping for this inviscid non-
linear calculation, an explicit constant-coefficient 10th-order artificial dissipation using Kennedy and Carpenter’s boundary
stencils [18] was added at each stage.

The calculation was run on a 3201 point evenly spaced grid to ensure that the maximum CFL conditions for the HALE-RK
schemes were reached; it was found that the use of a stretched grid of 185 grid points actually allowed a higher CFL condi-
tion to be used. The grid spacing was determined by the sharp mean flow gradients in the throat region of the nozzle; the
acoustic wave was massively over-resolved with over 600 points per wavelength.

The flow solution was initialized at zero flow and run 1500 cycles to convergence. For HALE-RK67 and HALE-RK7
schemes, each cycle of oscillation had 350 time steps; this resulted in a final CFL of 3.21. For the HALE-RK6 scheme, each
cycle of oscillation had 390 time steps; this resulted in a final CFL of 2.8. For Figs. 6 and 7 compare the results using the
HALE-RK schemes to the benchmark solutions for the mean pressure and the instantaneous disturbance pressure distribu-
tions at the start of the cycle. Both compare very well. In particular, note the disparity between the acoustic wavelengths
shown in Fig. 7 with the sharp mean flow gradients in the nozzle shown in Fig. 6. The results in Fig. 7 show that the
HALE-RK schemes are accurately resolving this low-frequency disturbance.
6.2. Vortical gust impinging on airfoil

At this point, the HALE-RK schemes were implemented in the NASA Glenn Research Center Broadband Aeroacoustic Sta-
tor Simulation (BASS) CAA code [19], and tested on a realistic 2D benchmark gust-airfoil interaction problem [20]. The results
are compared to previously validated results from this code using Stanescu and Habashi’s [9] low-storage extension of Hu’s
LDDRK56 method [8].

The BASS code solves the nonlinear 3D Navier–Stokes equations, and can be switched down to solve the 2D nonlinear
Euler equations. For general applicability to complex flow geometries, the curvilinear coordinate form of the governing equa-
tions are solved on a structured multiblock grid. For portability and efficiency, BASS is coded in Fortran90 and parallelized
using the Message Passing Interface (MPI).

In this test case, the nonlinear Euler equations are solved for the unsteady flow about a cambered Joukowski airfoil. The
free stream Mach number for this case is 0.5. A two-dimensional vortical gust with a reduced frequency of 3.0 is introduced
at the inflow boundary and convects with the flow. When the gust impinges on the airfoil, noise is radiated. The BASS code
has been extensively tested for this problem; details of these calculations are given in Ref. [21].
Fig. 6. Comparison of mean pressure.



Fig. 7. Comparison of disturbance pressure at start of cycle.

Fig. 8. Joukowski airfoil grid.

Fig. 9. Comparison of Pmean on airfoil.
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Fig. 8 shows a close-up of the body-fitted grid used about the Joukowski airfoil. The grid is clustered near the leading edge
of the airfoil in order to resolve the sharp flow gradients in this region. In this calculation, the physical wavelength of the
unsteady gust is approximately one chord length; thus, the time step limit is based on the stability restriction from the clus-
tered grid rather than on the accuracy restriction for resolving the unsteady gust dynamics. To quantify this further, the RK56
time stepping method takes 960 time steps per cycle of unsteady gust oscillation, while the HALE-RK schemes take 384.

For comparison, the BASS code is run on the same grid using the same spatial differencing, dissipation, and boundary con-
ditions. On the first run, the RK56 time marching scheme is used with a CFL of 1.27. On the remaining runs, the HALE-RK
schemes are used with a CFL of 3.17. The observed speedup is a factor of 2.1.

As an initial condition for both runs, the airfoil is impulsively started in a uniform flowfield, and the gust convects into the
domain from the upstream boundary. Figs. 9–11 compare the results from the time marching schemes used. On the airfoil
surface, Figs. 9 and 10 show that the schemes are getting very similar answers for the mean pressure and RMS pressure dis-
Fig. 10. Comparison of Prms on airfoil.

Fig. 11. Comparison of far field acoustic intensity.
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turbance. In Fig. 9, the HALE-RK schemes are predicting a slightly higher mean airfoil lift than the RK56 scheme; however,
the unsteady pressure disturbance on the airfoil surface is almost identical between the schemes. Fig. 11 shows the acoustic
intensity in the far field. Again, the solutions are very similar, with slight differences in the amplitude of the radiated acoustic
field.

7. Conclusions and future directions

In this work, a new series of high-accuracy large-step Runge–Kutta schemes were developed and validated for unsteady
inviscid flow calculations. These schemes are designed to provide the maximum inviscid stability limit while retaining
fourth-order nonlinear time accuracy. These schemes were tested on several benchmark nonlinear computational aeroacou-
stic problems, with very good results. It must be noted, however, that these schemes were tailored for inviscid flow calcu-
lations and lose their advantages for viscous flow problems. Based on these results, research is continuing to develop similar
methods for use in Large Eddy Simulations.
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Appendix

The relationship between the original RK variables ai;j; bi; ci and the 2N-storage variables ai; bi up to seven stages are pre-
sented in this section. Formulae given in [6] were used to obtain these relationships
a2;1 ¼ b1;

a3;1 ¼ a2b2 þ b1;

a3;2 ¼ b2;

a4;1 ¼ a2ða3b3 þ b2Þ þ b1;

a4;2 ¼ a3b3 þ b2;

a4;3 ¼ b3;

a5;1 ¼ a2ða3ða4b4 þ b3Þ þ b2Þ þ b1;

a5;2 ¼ a3ða4b4 þ b3Þ þ b2;

a5;3 ¼ a4b4 þ b3;

a5;4 ¼ b4;

a6;1 ¼ a2ða3ða4ða5b5 þ b4Þ þ b3Þ þ b2Þ þ b1;

a6;2 ¼ a3ða4ða5b5 þ b4Þ þ b3Þ þ b2;

a6;3 ¼ a4ða5b5 þ b4Þ þ b3;

a6;4 ¼ a5b5 þ b4;

a6;5 ¼ b5;

a7;1 ¼ a2ða3ða4ða5ða6b6 þ b5Þ þ b4Þ þ b3Þ þ b2Þ þ b1;

a7;2 ¼ a3ða4ða5ða6b6 þ b5Þ þ b4Þ þ b3Þ þ b2;

a7;3 ¼ a4ða5ða6b6 þ b5Þ þ b4Þ þ b3;

a7;4 ¼ a5ða6b6 þ b5Þ þ b4;

a7;5 ¼ a6b6 þ b5;

a7;6 ¼ b6;
b1 ¼ a2ða3ða4ða5ða6ða7b7 þ b6Þ þ b5Þ þ b4Þ þ b3Þ þ b2Þ þ b1;

b2 ¼ a3ða4ða5ða6ða7b7 þ b6Þ þ b5Þ þ b4Þ þ b3Þ þ b2;

b3 ¼ a4ða5ða6ða7b7 þ b6Þ þ b5Þ þ b4Þ þ b3;

b4 ¼ a5ða6ða7b7 þ b6Þ þ b5Þ þ b4;

b5 ¼ a6ða7b7 þ b6Þ þ b5;

b6 ¼ a7b7 þ b6;

b7 ¼ b7;
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c1 ¼ 0;
c2 ¼ b1;

c3 ¼ b1 þ b2ða2 þ 1Þ;
c4 ¼ b1 þ b2ða2 þ 1Þ þ b3ða3ða2 þ 1Þ þ 1Þ;
c5 ¼ b1 þ b2ða2 þ 1Þ þ b3ða3ða2 þ 1Þ þ 1Þ þ b4ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ;
c6 ¼ b1 þ b2ða2 þ 1Þ þ b3ða3ða2 þ 1Þ þ 1Þ þ b4ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ þ b5ða5ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ þ 1Þ;
c7 ¼ b1 þ b2ða2 þ 1Þ þ b3ða3ða2 þ 1Þ þ 1Þ þ b4ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ

þ b5ða5ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ þ 1Þ
þ b6ða6ða5ða4ða3ða2 þ 1Þ þ 1Þ þ 1Þ þ 1Þ þ 1Þ:
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